HypoPG2: Hypothetical Partitioning support
for PostgreSQL

PgConf.Russia 2019

Feb. 6th

Julien Rouhaud

Who worked on HypoPG 2?

* Julien Rouhaud (From Paris, France)
- Working on HypoPG, POWA and some contribution to PostgreSQL

* Yuzuko Hosoya (From Tokyo, Japan)
- NTT Open Source Software Center
- Working on HypoPG
- Interested in Partitioning/Planner

VI.

Introduction of HypoPG

Why Hypothetical Partitioning?

Usage & Architecture of Hypothetical Partitioning
Demo

Future Works

Summary

Introduction of HypoPG

Introduction of HypoPG

HypoPG

Hypothetical Indexes support for PostgreSQL

Latest version HypoPG 2.0.0beta

Support PostgreSQL 9.2 and above (pgl10+ for hypothetical
partitioning)

Github https://github.com/HypoPG/hypopg

Documentation https://hypopg.readthedocs.io

https://github.com/HypoPG/hypopg
https://hypopg.readthedocs.io/

HypoPG 1.X

e Supports hypothetical Indexes

* Allows users to define hypothetical indexes on real tables
and data

 If hypothetical indexes are defined on a table, planner considers them
along with any real indexes

* Qutputs queries’ plan/cost with EXPLAIN as if hypothetical indexes
actually existed

* Helpsindex design tuning

HypoPG 2 (beta is available!)

* Multiple months of work!
e Original idea from Hosoya Yuzuko

e Supports hypothetical partitioning (PostgreSQL 10 and above)

» Allows users to try/simulate different hypothetical partitioning schemes
on real tables and data

e Qutputs queries’ plan/cost with EXPLAIN using hypothetical partitioning
schemes

* Helps partitioning design tuning

Why Hypothetical Partitioning?

PostgreSQL Partitioning

e Declarative Partitioning was introduced in PostgreSQL 10

* Improved in all new versions

Declarative Partitioning was introduced
- Partitioning enabled by

CREATE TABLE statement
- RANGE/LIST Partitioning

Partitioning by combination Many enhancements of partitioning

of following features - HASH Partitioning - Improvement
- Table Inheritance - Partitioned Index planning for
- Check Constraint - Default Partition partitioning

- Trigger - Faster Partition Pruning

- Partitionwise Join/Aggregation and so on

3 Query Performance and
Partitioning Schemes

 The most IMPORTANT factor affecting query performance over
a partitioned table is partitioning schemes

v Which tables to be partitioned
v" Which strategy to be chosen
v" Which columns to be specified as a partition key

v How many partitions to be created

Partition Pruning

e Do not scan unnecessary partitions to reduce data size to be read from the

disk

SELECT * FROM orders WHERE date=‘January’;

Scanned

order_id

pri,ce

date

order_id

pri,ce

oate

——— January

orders

| order id

Pri,ce

date

NOT - December

> 12 partitions

Scanned

Partition Pruning

e Do not scan unnecessary partitions to reduce data size to be read from the
disk

e Optimal partitioning Scheme:
Partition by the column specified in WHERE clause

SELECT * FROM orders [WHERE date=‘January’];

Partition order_Lol price date \
by order_id price date - January —
date | | > 12 partitions
— orders :
ovoev_iol price date

—— December ——
| | j

Partitionwise Join

* Joining pairs of partitions might be faster than joining large tables

SELECT c.name FROM orders o LEFT JOIN customers c
ON o.cust id =

c.cust_id where o.date

‘September’;

cust Lol

name

address

customers]

orfler id | cust id | date cust id | name | address
order id | cust id | date 1-1000 N 1-1000
- orders :
orfler_td | cust i | date cust_td | name | adlolres?
5001-6000 —M% 5001-6000 -
\ | | I 1

—

Partitionwise Join

* Joining pairs of partitions might be faster than joining large tables

e Optimal partitioning scheme:
Partitioned by the column specified in JOIN clause

SELECT c.name FROM orders o LEFT JOIN customers c

= ‘September’;

Partition

by
cust_id

cust Lol '

name | address

cust_id

— customers]

ON o.cust _id = c.cust_id |[where o.date
order td | cust td date cust id | name | address
ovder id | cust Lo date 1_ 1 ooo 1 _ 1 OOO -
- orders -
order_td | cust i | date cust_id | name | address
Pargtion 5001-6000 — |— 5001-6000 —
y | | | 1

Partitionwise Aggregation

* Performing aggregation per partition and combining them might be faster than
performing aggregation on large table

SELECT date, sum(price) FROM orders GROUP BY date;

orderid | price | date |)

order_io ‘PYLGC date Janua ry | Agg

order_Lol price date \

—— December —— Agg
. |)

Partitionwise Aggregation

* Performing aggregation per partition and combining them might be faster than
performing aggregation on large table

e Optimal partitioning scheme:
Partitioned by the column specified in GROUP BY clause

SELECT date, sum(price) FROM orders |GROUP BY datéL

Partition order Lol price date
by order_io 'PYLGC date J anua ry
date I |
E— orders — :
order_ Lo price date

—— December ——
| |

Question:
How do you partition these tables?

e Assume this situation

SELECT * FROM orders [WHERE date=‘Januar‘y’];

SELECT c.name FROM orders o LEFT JOIN customers c
ON o.cust _id = c.cust _id |where o.date = ‘September’;

00y P
?f.l,i% Partition 9?559‘?
:;90;:3 cFD&Dé? cust_id | name | address
P O

Partition |
by

ovder ol | cust td date

orders customers

It's VERY HARD ...

e There are often multiple choices on partitioning schemes

* Queries’ plan/cost are largely affected by data size and parameter settings

It's VERY HARD ...

Do you want to know how your queries would
behave before actually partitioning tables?

Hypothetical Partitioning is Helpful!

* You can quickly check how your queries would behave if certain tables were
partitioned without actually partitioning any tables and wasting any resources
or locking anything

* You can try different partitioning schemes in a short time

Usage & Architecture
of Hypothetical Partitioning

* Need to have an actual plain table
* Create hypothetical partitioning schemes using following function:

For hypothetical partitioned table

hypopg partition_table
(“table_name’, ‘PARTITION BY strategy(column)°’)

For hypothetical partitions
NOTE: the 3rd argument is only for subpartitioning

hypopg add partition

(“table_name’,
‘PARTITION OF parent FOR VALUES partition_bound’
‘PARTITION BY strategy(column)’)

How to Estimate Cost/Rows

 HASH partitioning (simple example, no subpartition)
For each partition
e getits modulus

e compute the total fraction of the root table that should be in the given partition

* Example
 CREATE TABLE t1 ... FOR VALUES WITH (MODULUS 10, REMAINDER 1)
e CREATE TABLE t2 ... FOR VALUES WITH (MODULUS 5, REMINDER 2)
 Partition t1 would have 10% of all rows
* Partition t2 would have 20% of all rows

") How to Estimate Cost/Rows

* RANGE/LIST partitioning (simple example, no subpartition)
For each partition
* get the partition’s constraint
e compute the selectivity for those constraints

* Example
 CREATE TABLE t1 ... FOR VALUES FROM (1) TO (10)

e the constraints are
id>=1ANDid< 10

e estimate this predicate using standard PostgreSQL selectivity
functions

But this has defaults!

This approach can lead to very bad estimates in some cases
(list partitioning, subpartitioning, complex partitioning expressions...)

We added a function to compute accurate statistics according to the defined partitioning scheme:
hypopg_analyze()

We also store the number of estimated rows in each partition during the process

Be careful, this has to be explicitly called!
(there’s no autovacuum for hypopg_analyze)

.| How to Create Hypothetical Statistics

* Create hypothetical statistics for hypothetical partitions using following function:

hypopg _analyze
(“table_name’, percentage for sampling)

* The table specified in the first argument of this function must be a root table

 Statistics of all leaf partitions, which are related to the given table, are created

How hypopg_analyze() Works

e For each partition, get the partition bounds including its ancestors if any

hypopg analyze(‘orders’, 70);

partition
by date

order_td

cust_id

date

orders

|

part
by c

order_id | cust_id | date

— January —

| order_id | cust id | date

— February —

ition
ust_id

orderid | cust id | date

1-1000 —

<

| order_id | cust id | date |

- 1000-2000 -

ovder_id | cust id | date

— December -

/

partition bound:
date = ‘January’,
cust_id >=1 AND
cust_id <1000

How hypopg_analyze() Works

e For each partition, get the partition bounds including its ancestors if any

* Generate a WHERE clause according to the partition bound

hypopg analyze(‘orders’, 70);

partition
by date

order_td

cust_id

date

- orders

partition
by cust_id

order_id | cust id l date

— January —

orderid | cust id | date

1-1000 —

<_ordcr_iol | cust_id | date |

| order_id | cust id | date

— February —

ovder_id | cust id | date

— December -

- 1000-2000 -

/

d

partition bound: ~\
WHERE 4
date = ‘January’ AND

C
C

cust_id >= 1 AND
cust_id < 1000

How hypopg_analyze() Works

e For each partition, get the partition bounds including its ancestors if any

* Generate a WHERE clause according to the partition bound
 Compute stats for sampling data got by TABLESAMPLE and the WHERE clause

hypopg _analyze(‘orders’, 70);

partition
by date

order_td

cust_id

date

orders

partition

by cust_id [erdecid [eustia | date |
order_id [cust_id | date | — 1-1000 —
_ January _< | order_id | cust_td | date |
| order_{d | cust_id | date | ~ 1000-2000 -
— February —

ovder_id | cust id | date

— December -

/

d
C

partition bound: ~
WHERE 4
date = “January’ AND

C

cust_id >= 1 AND
cust_id < 1000

) TABLESAMPLE Clause

Get sampling data from a target table according to percentage

SELECT select expression FROM table_ nhame
TABLESAMPLE sampling method(percentage) WHERE condition

v Two kinds of sampling method
= SYSTEM: pick data by the page
= BERNOULLI: pick data by the row

v’ Specify WHERE clause
eliminate data that doesn’t satisfied WHERE condition

[T 1T T 1
target
table

L1

”/‘\\“"ﬁheﬁng

sampling

How hypopg_analyze() Works

e For each partition, get the partition bounds including its ancestors if any

* Generate a WHERE clause according to the partition bound
 Compute stats for sampling data got by TABLESAMPLE and the WHERE clause

hypopg analyze(‘orders’, 70);

partition
by date

order_td

cust_id

date

orders

partition bound: ~
N / d WHERE 4
partition - ‘I date = “January’ AND
by cust_id JulllBEHHIEL | of cust_id >= 1 AND
order_id [cust_id | date | — 1-1000 — CUSt_id < 1000
B Ja,”“arY B [order_id | cust id | date | —
| order_{d | cust_id | date | ~ 1000-2000 -
— February — Compute Stats
T TTTTTT] <
: : — orders]
order_id | cust_id | date EEEEEE 5
— December -

sampling

filtering

Exception

* hypopg analyze() won’t retrieve constraints for a hash partition

* instead,
e sum the fractions of rows each level of partition defined with a hash partitioning scheme
e do a simple ratio of the previously computed values (for all non-hash partitions)

computed by HASH computed by
hypopg_analyze() RANGE order_id | cust id | date modulus

ovdler_td | cust td | dote
order td | cust td | date

order td | cust i | date

order L | cust_id | date

order_td | cust_idd | date

Architecture

HypoPG uses four kinds of hooks
(five kinds of hooks for PostgreSQL 10)

PostgreSQL HypoPG

EXPLAIN Table OID
q ﬁ T
T e .
h ‘ h T1 ™ =
Query Plan Hypothetical @ @ @
Scheme/

Actual Statistics Hypothetical

Architecture

Using ProcessUtility_hook, HypoPG detects an EXPLAIN without
ANALYZE option and saves it in a local flag for following steps

PostgreSQL HypoPG

EXPLAIN Table OID

ﬁ T
T ——r—

Query Plan Hypothetical @
Scheme/

Architecture

injected if the target table is partitioned hypothetically. This
involve modifying a lot of internal structure to make them identical
to what real partitioning would have generated.

PostgreSQL HypoPG

a Using get_relation_info_hook, hypothetical partitioning scheme is

EXPLAIN Table OID
—‘T
Query Plan Hypothetical
Scheme/

Actual Statistics Hypothetical

Architecture

3 Using get_relation_stats_hook, hypothetical statistics are injected
to estimate correctly if they were created in advance

PostgreSQL HypoPG

EXPLAIN Table OID
q ﬁ T
T
Query Plan Hypothetical
Scheme/

Actual Statistics Hypothetical

Architecture

. (for PostgreSQL 10)
Using set_rel_pathlist_hook, a partition which is need not be
scanned is marked as dummy for partition pruning

EXPLAIN

PostgreSQL

Table OID

Hypothetical
Scheme/
Statistics

HypoPG

ngo‘che‘cicm

Architecture

Using ExecutorEnd_hook, the EXPLAIN flag is removed.
Finally a query plan using hypothetical partitioning schemes is

displayed!!

PostgreSQL

EXPLAIN

q

Query Plan

Table OID
—‘T
Hypothetical
Scheme/
Actual Statistics

LTS

>
-
-
-
-
-
-
-
-

~
-~
S~

nga’chet’wm

T3

DEMO

DEMO time!

* Create a hypothetical partitioning scheme and execute some simple queries

- A simple customers table to be partitioned actually:

customers (cust id integer PRIMARY KEY,
name TEXT, address TEXT)

- A simple orders table to be partitioned hypothetically:
NOTE: for convenience, this table is named **hypo_**orders to quickly identify it in the
plans.

hypo_orders (orders_id int PRIMARY KEY,
cust _id int, price int, date date)

“] What You Can Do

e Simulate RANGE/LIST/HASH Partitioning

e Simulate SELECT queries
Partition Pruning, Partitionwise Join/Aggregation,
N-way Join, Parallel Query

e Simulate INSERT queries
e Simulate multi-level hypothetical partitioning
e Simulate a default partition (which can also be partitioned)

e Simulate indexes on hypothetical partitions
Both actual and hypothetical indexes

Limitations

* Only for plain tables, not on already partitioned tables
Inheritance based and declarative partitioning

* Table name can’t be changed in explain, an alias is used instead to show the
hypothetical partition name

* Do not support UPDATE/DELETE queries

* Do not support PostgreSQL 12 yet

Future Works & Summary

ﬁ What’s next?

* Have a better integration in PostgreSQL core to ease our limitations
- Support UPDATE/DELETE queries
- Support already partitioned tables

e Support PostgreSQL 12 (and future versions)

* Add automated advisor feature
pg_qualstats can help to find columns used in all queries on a given table if
any

HypoPG2 supports hypothetical partitioning

- Allows users to try/simulate different hypothetical partitioning schemes
on real tables and data

- Outputs queries’ plan/cost with EXPLAIN using hypothetical partitioning
schemes

Hypothetical partitioning helps you all to design partitioning
schemes

- You can quickly check how your queries would behave if certain tables
were partitioned without actually partitioning any tables and wasting any
resources

- You can try different partitioning schemes in a short time

We’d be happy to have some feedbacks!

THANK YOU!
Any questions?

Julien Rouhaud
rjujul23@gmail.com
@rjujul23

Yuzuko Hosoya
hosova.yuzuko@lab.ntt.co.jp

@pyyycha

mailto:rjuju123@gmail.com
mailto:hosoya.yuzuko@lab.ntt.co.jp

